PCR-RFLP of the Vitamin D Receptor Gene in Human Immunodeficiency Virus Patients Deficient in Vitamin D3 in Cote d’Ivoire

Lydie Boyvin¹,², Aya Jeanne Armande Aké¹,², Yapi Guillaume Yayé³, Moumouni Faïza Alassani⁴, Kipré Laurent Séri¹,², Gnogbo Alexis Bahi¹,², Louise Odile Moke-Bédji⁵ and Joseph Allico Djaman¹,²

¹Department of Medical and Fundamental Biochemistry, Institut Pasteur of Côte d’Ivoire (IPCI), 01 BP 490 Abidjan 01, Côte d’Ivoire.
²Biology and Health Laboratory, Félix Houphouët-Boigny University (FHBU), 01 BP V34 Abidjan 01, Côte d’Ivoire.
³Department of Biochemistry-Microbiology, University of Jean Lourougnon Guédé, 01 BP 540 Abidjan 01, Côte d’Ivoire.
⁴Department of Hematology, Immunology and Cell Biology, Félix Houphouët-Boigny University (FHBU), 01 BP V34 Abidjan 01, Côte d’Ivoire.
⁵Diabetes and Hypertension Clinic Béda Yao Bernard, Treichville University Teaching Hospital (UTH), 01 BP V03 Abidjan 01, Côte d’Ivoire.

Authors’ contributions

This work was carried out in collaboration among all authors. Author LB wrote the protocol of the study, the first draft of the manuscript and supervised the technical aspects of the study. Authors AJAA and LOMB supervised blood samples collection and managed the biological analyses of the study. Authors KLS and GAB supervised the analyses and performed the statistical analyses of the study. Authors YGY and MFA managed a part of the literature searches and corrected the first draft of the manuscript. Author JAD designed the study, managed a part of the literature searches investigator and the final correction of the manuscript. All authors read and approved the final version of the manuscript.

Article Information

DOI: 10.9734/MRJI/2020/v30i230194
Editor(s):
(1) Dr. Ana Cláudia Coelho, University of Trás-os-Montes and Alto Douro, Portugal.
Reviewers:
(1) Qi Cheng, Chinese Academy of Agricultural Sciences, China.
(2) Panan Kanchanaphum, Rangsit University, Thailand.
Complete Peer review History: http://www.sdiarticle4.com/review-history/55751

Received 13 January 2020
Accepted 21 March 2020
Published 27 March 2020

*Corresponding author: E-mail: lydieboyvin@gmail.com;
ABSTRACT

Aims: This study was to identify mutations in patients’ vitamin D receptor (VDR) gene in Côte d'Ivoire, precisely in Human immunodeficiency virus (HIV) patients deficient in vitamin D₃.

Methodology: Fifty (50) DNA extractions from peripheral blood mononuclear cells collected from HIV positive and vitamin D₃ deficient patients were analyzed after verifying their integrity by quantification of genomic DNA and migration from agarose gel. The use of the restriction enzymes Dpn I, Bg III and Pst I made it possible to carry out the PCR-RFLP of the fragments Fok-1 in exon 2, Bsm-1 and Apa-1 in intron 8 and Taq-1 in exon 9.

Results: The analysis of the DNA fragments Fok-1 in exon 2 and Bsm-1 in intron 8 of the VDR gene from HIV positive patients deficient in vitamin D₃ showed a significantly high prevalence of mutant genotype (100% and 98%) respectively p = 0.0001. Furthermore, in this study, a prevalence of 6% of mutant genotype was observed in Taq-1 of exon 9 of the VDR gene.

Conclusion: The high prevalence of mutant genotypes observed in the DNA fragments of Fok-1 in exon 2 and Bsm-1 in intron 8 of the VDR gene studied confirms the presence of mutations in the VDR gene of these patients. It would, therefore, be necessary to sequence the DNA fragments with mutations in order to identify the mutations that affect the VDR gene and that are responsible for the vitamin D₃ deficiency observed in these patients.

Keywords: Vitamin D receptor (VDR); HIV; PCR-RFLP; Côte d'Ivoire.

1. INTRODUCTION

HIV infection is a global public health problem. Africa is the most affected continent with 25.6 million people living with HIV in 2016 [1]. In Côte d'Ivoire, the prevalence of the disease had decreased from 3.4% in 2013 to 2.8% in 2017 [2,3].

The active form of vitamin D₃ (1,25-dihydroxyvitamin D₃) ensures its biological activity with the aid of its nuclear receptor (VDR) [4]. It plays a major role in the regulation of phosphocalcic homeostasis and the metabolism of minerals. It is involved in other biological functions such as cell growth, differentiation, proliferation, apoptosis, adapted and inborn immune responses [5]. There is a link between vitamin D₃ deficiency and susceptibility to acute infections as well as the more unfavorable course of certain chronic infections such as HIV infection [6].

VDR is involved in the gene regulation of a large number of cell types including cells involved in innate and adaptive immunity [7]. It is widely expressed in various tissues [8] and, therefore, represents an important therapeutic target in the treatment of various disorders [9]. As ligand binding is a key step in VDR signaling, the vitamin D₃ deficiency observed in HIV positive patients could also be linked to mutations in the vitamin D nuclear receptor (VDR) [10,11]. Indeed, the analysis of the gene coding VDR on chromosome 12 showed the diversity of possible alterations of this gene are that often mutations concerning exon 7 and 9 which codes the part of the receptor that binds the hormone, the exons 2 or 3 which encode the region by "Zinc-fingers" allowing the receptor to bind to nuclear DNA. These mutations are responsible for the vitamin D₃ deficiency observed in HIV positive patients [12]. Therefore, the existence of genetic polymorphism of VDR also constitutes an important factor of individual susceptibility to the biological effects of vitamin D₃[13,14].

In addition to its role in mineral metabolism, 1,25-dihydroxvitamin D₃ exerts an immunomodulatory activity through the vitamin D receptor (VDR) by activating monocytes, stimulating cell-mediated immunity and suppressing lymphocyte proliferation, antibody production, and cytokine synthesis. VDR mediates genomic actions of 1,25 (OH)2D₃, by acting as a transcription factor that modulates the expression of several1,25(OH)2D₃ response genes. Variations in the VDR gene have been associated with susceptibility and progression to several immune diseases mainly HIV infection. they may alter gene function and compromise the role of 1,25 [OH] 2D, leading to decreased activation of the immune system [15].

Genetic variations in VDR might decrease VDR expression, influencing the binding of 1,25 [OH]2D to VDR and inducing apoptosis, consequently affecting CD4+ T-cells recovery [16,17].
In Côte d'Ivoire, no molecular study has been done to this effect to better understand vitamin D₃ deficiency. This study aimed to identify mutations in the VDR gene in HIV positive patients.

2. SAMPLES AND METHODS

This is an experimental study that took place between November 2015 and December 2016 in the Department of Biochemistry of the Institut Pasteur in Côte d'Ivoire. A cohort of 50 blood samples was taken from an EDTA (ethylene diamine tetra-acetic) tube in 50 adult HIV-positive patients deficient in 25-hydroxyvitamin D₃ after obtaining written informed consent from each patient.

2.1 Assay for 25 (OH) D₃

The assay of 25-hydroxyvitamin D₃ was performed using UV detection in high performance liquid chromatography (HPLC) with a Waters® device, after extracting soluble vitamins in hexane protected away from light according to the method of Zaman [18]. The serum reference values of 25 (OH) D₃ are: Deficient (< 20 ng / mL); Insufficient (20-29 ng / mL); Sufficient (30-100 ng / mL); Toxic (> 100 ng / mL) [19].

2.2 Extraction of Genomic DNA in Peripheral Blood Mononuclear Cells

Mononuclear cells (approximately 10⁷ cells) were previously isolated from peripheral blood using the separation method of Ficoll flotation [20].

The DNA, extracted from mononuclear cells from the blood by the method of Maurya [21] was dissolved in 100 μL of TE buffer (10 mM Tris HCl [pH 7.5], 1 mM sterile EDTA) and incubated for at least four hours at 50°C with gentle shaking.

The following mixture was prepared in a 25 μL final volume: water milliQ, specific primers (10 μM), 5×HOT FIREpol® Blend Master (MgCl₂ 2.5 mM dNTPs 200 μM, taq DNA polymerase), DNA matrix (2 μL) [25].

The primer pairs used were: Fok-1F 5’-AGCTGGCCTGGCAGTACTGCTCT-3’ and Fok-1R 5’-ATGAAAACACCTTGCTTCTCCTCCTC-3’;

Bsm-1F 5’-AACCAAGACTAAAGTACCGCCGTCAGTGA-3’ and Bsm-1R 5’-AACCAGGGAGAGAGGAGG-3’;

Apa-1F 5’-GTGGGATTGACGACGTAG-3’ and Apa-1R 5’-ATCATCTTGGCATAGAG-3’; Taq-1F 5’-CAGAGCATGGAGGAGGACAA-3’ and Taq-1R 5’-GAACCTCCTCATGGCTAGGTCTC-3’.

These primers are those previously published by Chakraborty [26] and Rashedi [27]. They have been synthesized by Sigma Aldrich (France).

For carrying out the PCRs, each stock solution (100 μM) was diluted 1:10 to give a concentration of 10 μM.

The most studied fragments of the VDR gene are Fok-1 (rs2228570) in exon 2, Bsm-1 (rs1544410) and Apa-1 (rs7975232) in intron 8 and Taq-1 (rs731236) in Exon 9 [22]. The Fok-1 polymorphism occurs near the 5'-UTR region of the gene in the DNA binding domain and plays an essential role in message stability and in post-transcriptional processes [23]. Suneetha’s study reported an association between the Bsm-1, Apa-1 and Taq-1 polymorphisms, and the stability of messenger RNA from VDR (mRNA) [24].

For carrying out the PCRs, each stock solution (100 μM) was diluted 1:10 to give a concentration of 10 μM.

The applied Biosystems thermal cycler (2720 Thermal Cyber, Singapour) was programmed to perform 35 cycles of 94°C for five minutes (first cycle), followed by 94°C for 30 seconds, or one minute (29 following cycles), 51°C for Fok-1 and Bsm-1, 53°C, 69°C for Apa-1 and Taq-1 respectively × 30 seconds, and
The lengths of the fragment product PCR obtained after the amplification were 267 bp for exon 2 (Fok-1), 822 bp for intron 8 (Bsm-1), 195 bp for intron 8 (Apa-1) and 745 bp for exon 9 (Taq-1), respectively.

- After PCR-RFLP using Dpn I, no restriction site was found, so only one fragment of 267 bp is obtained. For the others [Bg III (intron 8), Pst I (intron 8), Pst I (exon 9)], two DNA fragments were found in each case (435 bp / 387 bp; 130 bp / 65 bp; 421 bp / 324 bp respectively).

- The analysis of DNA fragments in exon 2 Fok-1 of the PCR-RFLP of the VDR gene from HIV positive patients deficient in vitamin D₃ showed a significantly high prevalence of mutant genotype (100% and 98% respectively). Indeed, this strong presence of the mutant genotype of DNA fragments Fok-1 could be due to the polymorphism at exon 2 of the VDR gene [29].
Table 2. Distribution of DNA samples according to the genetic profile

<table>
<thead>
<tr>
<th>ADN Fragments of VDR genes</th>
<th>PCR-RFLP (n = 200)</th>
<th>Genotypes</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wild n (%)</td>
<td>Mutant n (%)</td>
<td></td>
</tr>
<tr>
<td>Exon 2: Fok-1 n= 50</td>
<td>0 (0)</td>
<td>50 (100)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Intron 8: Bsm-1 n= 50</td>
<td>1 (2)</td>
<td>49 (98)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Intron 8: Apa-1 n= 50</td>
<td>50 (100)</td>
<td>0 (0)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Exon 9: Taq-1 n= 50</td>
<td>47 (94)</td>
<td>3 (6)</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

It is a substitution of a nucleotide T (Thymine) for C (Cytosine) at the two potential translation initiation sites [30]. This mutation, which was a substitution of thymine by cytosine (T/C substitution), affects the polymorphism Fok-1 which alters the VDR gene function and disrupts the immunoregulatory activity of 1,25-dihydroxivitamin D3. This disruption leads to a vitamin D deficiency in the patient and therefore a decreased activity of his immune system [15].

The polymorphism of Fok-1 occurs near the 5' UTR region of the gene in the DNA binding domain and plays a critical role in message stability and in post-transcriptional processes [23]. In addition, this polymorphism which occurs at the 3' region of the VDR gene, the region in which exon 2 of the VDR gene is located, is associated with vitamin D₃ deficiency and the progression of HIV infection [31]. As for the polymorphism of Bsm-1, it does not modify the sequence of the VDR but could influence the expression of the VDR by altering the stability of the mRNA [32].

On the other hand, a high prevalence of wild genotype was observed in the DNA fragments of Apa-1 in intron 8 and Taq-1 at exon 9 of the VDR gene of 100% and 94%, respectively. In addition, a prevalence of 6% of mutant genotype was observed in Taq-1. This Taq-1 polymorphism is localized in exon 9 at codon 352. Indeed, polymorphisms have been identified in this region of the VDR gene. They could influence the expression of VDR by altering the stability of the mRNA [33].

5. CONCLUSION

The analysis of the DNA fragments of the VDR gene in HIV-positive patients deficient in vitamin D₃ revealed the presence of mutations in exon 2, intron 8 and exon 9. The high prevalence of genotype mutants observed in the DNA fragments Fok-1 at exon 2 and Bsm-1 at intron 8 of the VDR gene studied confirms the presence of mutations in the VDR gene of these patients. It would, therefore, be necessary to sequence the DNA fragments with mutations in order to identify and better assess the mutations that affect the VDR gene and those responsible for the vitamin D₃ deficiency observed in these patients.

Therefore, studies have shown that polymorphisms affecting the VDR gene are associated with HIV replication [34] and represent an important factor in genetic susceptibility to a decrease in vitamin D₃ [35].

In perspective, the sequencing of these three VDR genes will make it possible to better identify the mutations in order to verify their implication in vitamin D₃ deficiency.

CONSENT

Before sample-collection, informed consent was obtained from patients for the use of their blood for research purpose after completing the standard analyzes prescribed by their doctor.

ETHICAL APPROVAL

The study was conducted in accordance with the Helsinki Declaration 2000 on HIV and AIDS research conducted in poor countries and in accordance with the local legislation regarding the national program on treatment management for people living with HIV/AIDS (Decree No. 411 of December 23, 2001). All results were given to doctors for patients’ treatment.

ACKNOWLEDGEMENT

Our sincere gratitude to the entire staff of the Institut Pasteur of Abidjan, Côte d'Ivoire.
COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2020 Boyvin et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/55751

25