Technological Characteristics of Wild Non-Saccharomyces Sourced from Banana Fruit and Honey

L. C. Nnodim a*, N. N. Odu b, D. N. Ogbonna a and D. B. Kiin-Kabari c

a Department of Microbiology, Faculty of Science, Rivers State University, Nkpolu-Oroworukwo, Port Harcourt, Rivers State, Nigeria.

b Department of Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria.

c Department of Food Science and Technology, Faculty of Agriculture, Rivers State University, Nkpolu-Oroworukwo, Port Harcourt, Rivers State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/MRJI/2021/v31i1230357

Original Research Article

ABSTRACT

This study is aimed at evaluating the technological characteristics of wild non-Saccharomyces sourced from banana fruit and wild honey. The isolation of yeasts was done according to standard microbiological procedures. Technological traits screened for are as follows: fermentation ability, alcohol production, flocculation ability, organic acid production, and hydrogen sulphide production. Five yeast isolates were identified as B10 (Candida tropicalis), B7 (Candida tropicalis), H4 (Candida tropicalis), H7 (Clavisporaluitaniae), and CY (Candida tropicalis), which are sugar fermenters. The percentage of alcohol produced from each sugar fermented by the yeast isolates are as follows: sucrose - B7(11.50%) > H7(8.62%) > CY (7.80%) > H4(4.88%) > B10 (4.11%); Glucose - B7(9.82%) > CY (6.28%) > B10(4.56%) > H7(4.03%) > H4(2.19%) and Fructose - H7(13.11%) > CY (9.40%) > B10(7.03%) > H4(4.41%) > B7(3.70%). Yeast isolate CY demonstrated high flocculation of 28.55 and 44.75 (%) at 5 and 15 (minutes). The organic acid produced by the yeast isolates B10, B7, CY, H4 and H7 are as follows 1.90±0.41, 3.10±0.41, 1.25±0.07, 3.90±0.41 and 2.40±0.41 (AU).
respectively and Yeast isolates B7, CY, H4, and H7 produced low hydrogen sulphite concentration. Wild non-Saccharomyces could be the hope of the wine microbiologist to ease the challenges in the wine industry, as they competed favourably with the commercial wine yeast.

Keywords: Non-Saccharomyces; Fermentation ability; flocculation; hydrogen sulphide production.

1. INTRODUCTION

The Saccharomycescerevisiae yeasts have been themost widely accepted microorganism industrially [1-2], due to its ability to complete sugar fermentation, high alcohol yield, positive influence on the sensorial features of wines, long history of domestication by man [3-4], outstanding in the processing of substrates into wine, dominates the alcoholic fermentation [5-6] and well researched and understood eukaryotic cell [7].

Review and harmonization of the microbial taxonomy employed in food fermentation [8], have led to the adoption of yeast varieties that aim to satisfy consumer longings for wines with reduced alcohol content [9] and organic acid [10] using commercially tailored wine yeast strains [11] as standard [12] to identify low alcohol-producing yeast [13-14]. The natural obtainability of yeast strains that possess an ideal blend of oenological properties is decidedly improbable: current interest in non-Saccharomyces yeasts revealed strains possessing interesting oenological properties [4], thus revealing a new world of improved fermentation of complex and differentiated sensory profiles in wines [15] which have gained importance lately in the biotechnological setting [16].

For eons, wine production has been by spontaneous fermentation carried out by yeasts originating from the grapes; and the contribution of non-Saccharomyces yeasts in the wine production has been made known as the backbone of wine quality [17]. Biotechnologically, yeast biodiversity, especially for oenology, is underutilized, such as the potential benefits of non-Saccharomyces yeasts in wine production that unavoidably have a different list of desired properties [13]. The characteristics of yeasts without Saccharomyces (Candida, Kloeckera, Hanseniaspora, Zygosacharomyces, Schizosac charomyces, Torulaspora, Brettanomyces, Saccharomyces, Pichia and Williopsis genera) in vinification are receiving increasing attention from wine microbiologists in countries producing Old and New World wines [18] and indigenous yeasts involved in the production of indigenous honey wine (Ogol) have proven to possess the basic oenological properties [19].

Understanding the metabolic activity of safe wild yeasts could proffer solutions to the challenge of high alcohol production in wine [20], as non-Saccharomyces possess good fermentation attributes of industrial importance [21-22]. Currently, indigenous yeasts involved in spontaneous fermentation of alcoholic beverages are being studied [8,19], for the expression of essential enzymes required for quality winemaking, and these qualities aroused the use of non-Saccharomyces in winemaking [13] and essential components of human production of fermented food [5].

Flocculation is a natural, reversible active assemblage of cells into flocs. Aggregation of microorganisms is common among bacteria, filamentous fungi, algae, and yeasts. Dominant flocculation genes (FLO genes) FLO1, FLO5, and FLO8 were proposed to be the structural genes encoding proteins (lectins) involved in flocculation [24], FLO1, FLO2 and FLO4 [25]. The presence of glycoproteins on cells surfaces of the flocculent is due to the ionic or lectin-like binding force which is influenced by pH, sugar concentration, and flocculation inducing substances [26], dissolved oxygen, pH, fermentation temperature, and yeast handling, storage conditions and cell wall composition [27]. The FLO11-encoding flocculin is required for flocculation, adhesion to agar and plastic, invasive growth, pseudohyphae formation and biofilm development [28-30].

Hydrogen sulfide (H₂S) production during fermentation is common and a substantial problem in the global wine industry as it imparts undesirable off-flavors at low concentrations. The production of H₂S is a necessary intermediate compound in wine, resulting from the assimilation of sulfur through the sulfate reduction pathway using sulfite reductase [31]. The gene leading to reduced H₂S formation as an allele of MET10 (MET10-932), which encodes a catalytic subunit
of sulfite reductase, MET1, MET5, MET8, or MET10, and loss of sulfite reductase activity is inversely correlated with H₂S formation [32]. However, Good Manufacturing Practices must be strengthened to deal with the problem of volatile sulphur production in wines [33-39].

The organic acids content of fermented alcoholic beverages is largely associated with the substrate, but the concentrations of some of the organic acid are formed by yeasts as by-products of the main metabolic pathways during fermentation [40]. The non-conventional yeast Yarrowialipolytica degrades hydrophobic substrates efficiently to produce organic acids [41] and organic acid production from glucose by yeast at neutral and low pH [42]. The regulation of organic acids concurrently achieved by activation or inactivation of single genes like GTR1, GTR2, LIP5, LSM1, PHO85, PLM2, RTG1, RTG2, and UBP3 genes [43]. Wine-related yeast, Candida zemplinina, and Saccharomyces cerevisiae produce organic acidic (malic, fumaric and succinic acid) at a level comparable to the production of acid by Saccharomyces species [44-46]. Yeast strains have different patterns of consumption and production of organic acids and organic acid management during fermentation [47], which contributes significantly to the perception of wine quality by consumers [48]. This study aims to evaluate the technological characteristic of non-Saccharomyces wild bananas sourced from the wild.

2. MATERIALS AND METHODS

2.1 Isolation of Yeast from Samples

About 10g of the ripe banana fruit and 10ml of the wild honey was transferred aseptically into 250ml conical flasks containing 90ml sterile peptone broth and incubated for 24-48 hours at 30 °C. After incubation, an aliquot (0.1ml) of the broth was transferred to prepared yeast extract peptone dextrose agar plates (YEPDA) supplemented with chloramphenicol and evenly spread using a sterile bent glass rod. Plates were also incubated at 30 °C for 48 hours [49], observed growth was sub-cultured on YEPDA plates. The morphology of the yeasts was confirmed macroscopically and microscopically (under the light microscope) at X40 and X100 magnification) [50] after staining.

2.2 Molecular Characterization

The molecular characterization was carried out in the Bioinformatics Service Laboratory, Ibadan, Nigeria. The CTAB method as described by Ali and Latif [50] was adopted for the extraction of DNA from yeast strains. In this method, 24 hours yeast cultures in YEPD broth were centrifuged at maximum speed. Approximately 10 mg of yeast cells for each strain were taken and pre-warmed in 200 µl of solution I at 65 °C containing 1.4M NaCl, 2% CTAB, 20mM EDTA (pH 8.0), 0.2% β- mercaptoalcohol and 100mM Tris-HCl (pH 8.0) was introduced, mixed well and incubated at 65 °C for 15-20 minutes in the water bath. After incubation, all tubes were cooled for 3-5 minutes and the same volume of solution II (Chloroform: Isoamyl alcohol, 24:1) was added, thoroughly mixed and centrifuged at 14,000 rpm for 10 minutes at room temperature. The aqueous phase (upper) was taken from each Eppendorf separately and 3M Na acetate (1/10) was introduced into each Eppendorf along with an equal volume of cold isopropanol or a double volume of cold absolute alcohol, gently mixed and placed on ice for 10 minutes. All tubes after incubation were centrifuged at 12,000 rpm at 4 °C for 15 minutes and the supernatant was discarded. About 500µl of chilled 70% alcohol (solution III) was added directly to the washed pellet and then centrifuged at 14000 at 4°C for 2 minutes. The pellet was air-dried after the supernatant was removed from each tube. The pellet was resuspended in 50µl double deionized water or TE buffer and stored at -20 °C. The yield of DNA was quantified by a spectrophotometer. The ribosomal DNA internal transcribed spacer region: ITS1 (GTAGGTGAAACCTGGG) and ITS4 (TCC GCTTATTGATATGC) was used to amplify the DNA (Oliveira et al., 2008). The reaction mixture contained 100ng of DNA, 5µl of 10pmol of each oligonucleotide primer, 3µl of 25mM MgCl2, 3µl of 250mM dNTP mixture and Taq DNA polymerase (5units) in a total volume of 50 µl. PCR conditions were as follows: 3 min at 94 ° C followed by 35 cycles (45 s at 94°C, 45 s at 55 °C (annealing temperature), 1 min. at 72°C, and final extension for 7 min. at 72°C. The amplified product was determined by running on 0.8% agarose gel and visualized using a UV illuminator and photographed. More so, PCR products of the partially amplified-ITS region were subjected to restriction fragment length polymorphism (RFLP) for two restriction endonucleases TaqI and HaeIII. The reaction mixture contained 3.0 µl of 1X buffer (R-buffer for BsuRI (HaeIII) and
unique-buffer for TaqI), 15.0 µl PCR products (approximately 1.0 µg), 1µl of specific endonuclease, and 11µl of deionized water with a total volume of 30µl. The reaction mixtures were incubated at their specific temperatures as recommended by the manufacturer’s instructions (Fermentas) The restriction fragments were separated along with a DNA 100bp ladder on 1.5% w/v agarose gel and photographed after visualization under UV light. Finally, 2.5µl of the purified PCR products were sequenced using the Applied Biosystems ABI PRISMTM 3100 DNA sequence Analyzers with the BigDye® Terminator v3.1 Cycle Sequencing kit and protocols (Shittu et al., 2016). The DNA sequence obtained was blasted onto the NCBI gene bank to confirm the identities of the various yeasts.

2.3 Screening of Yeast Isolates for Sugar Fermentation Ability

The method of Alabere et al. [51] was adopted. Yeast extract peptone dextrose (YEPD) broth was compounded by transferring 15g of peptone water, 10g of yeast extract, and 20 g of fructose, glucose, sucrose, galactose, maltose, and lactose respectively into 2litres conical flasks containing 1litre of distilled water, then 10ml of broth was dispensed into test tubes containing inverted Durham tubestereilized by autoclaving at 121°C and 15 Psi for 15 minutes. At cooling, yeast isolates were inoculated into the broth and incubated for 48 hours at 28-30 (°C). The presence of gas (space) in the Durham tube was a confirmation of sugar fermentation.

2.4 Screening of Yeast Isolates for Alcoholproduction

Yeast isolates were screened for alcoholproduction according to the method of Ambadas (2011) and Reddy et al. (2009) modified using peptone water containing sucrose, glucose, and fructose (20 % (w/v)) respectively as substrate. The bottles were sterilized and rapidly cooled to room temperature and the yeast inoculum was transferred to the sterilized 50 ml fermentation medium. Test organisms were inoculated into a 100 ml flask containing 50 ml fermentation media and incubated for 48 h. The YEPS broth was adjusted to pH 4.0 before sterilization. Fermentation bottles were kept on a shaker to shake at 120 rpm and aeration for 8 h. Then followed by anaerobic fermentation for 24 h. Percentage alcohol by volume

\[\text{Percentage alcohol by volume} = \frac{(\text{OG}-\text{FG}) \times 131.25}{\text{OG}} \times 100\% \]

where:

OG = Original gravity of the sample.
FG = Final gravity of the sample.

For specific gravity correction, sample temperature below 20 °C 0.0002 is subtracted per degree °C and temperature above 20 °C 0.0002 is added per degree °C (Jean, 2006).

2.5 Flocculation Ability

Flocculation properties of yeast isolates were confirmed by using the method described by mill [52] with slight modification. yeast isolates were cultured for 3 days at 30 °C in a 100 ml conical flask containing 50 ml of Peptone water broth (15 g/l peptone and 5 g/l NaCl) supplemented with 10 g/l yeast extract and 20 g/l glucose under 24 hours shaking (140 rpm). Cells were harvested by centrifugation (4000 x g for 5 minutes) and washed with deionized water. The dispersed yeast was washed three times in a 1%NaCl solution and in deionized water, then the cells were suspended in 10 ml of 50 mM acetate buffer (pH 4.6) enriched with 0.1 % (g/l) CaCl₂, while the initial OD600 nm culture for each was determined. After agitationon shaking incubator at 140 rpm for 30 min, 5 ml of the cell suspension was transferred to a new test tube and allowed to stand undisturbed for 0, 5 and 15 minutes in a vertical position, after which, samples (3000 µl) were taken from just below the meniscus and the OD600nm determined using spectrophotometric method [29]. Flocculation ability (F) was determined by the following equation:

\[F = \frac{1}{A} \times 100\% \]

where A is the absorbance at 600 nm (OD600) immediately before the cells were shaken in flocculation buffer and B is the absorbance at 600 nm (OD600) after the flocculation settled for 5 min and 15 minutes.

2.6 Organic acid Production

The ability of yeast isolates to produce organic acid was determined using the methods adopted by Uzahet al. [53]. After a 3 - 5 days incubation period at 28 – 30 °C of Czapek-Doxagar medium, supplemented with 0.5 g of CaCl₂ and bromocresol green as indicator, the cells were then inoculated with each yeast isolate. Positive isolates were identified based on the presence of yellow zones around the colonies. The rate of organic acid production by yeast was determined.
by measuring the zones of clearance of each isolate. To ascertain the acid unitage (AU) of each yeast isolate, the diameter of the yellow zone was divided by the diameter of the colonies.

2.7 Hydrogen Sulphide Production

Hydrogen sulphide (H₂S) production was evaluated on BiGGY and Lead Acetate agar. The agar plates were streaked with a pure culture of yeast and incubated for 48 hours at 28-30 °C. The qualitative measure for H₂S production on the medium was decided by the colour of the colonies, which ranged from white through brown to near-black. The white colony means no hydrogen sulfide production and the black colony means high hydrogen sulphide concentration [31].

3. RESULTS

3.1 Sugar Fermentation Ability

Yeast isolates isolated from banana fruit and wild honey were subjected to sugar fermentation to determine their fermenting ability of fructose, glucose and sucrose due to the presence of gas trapped in the Durham tube. Yeast isolates CY a commercial wine yeast adapted for referencing, B7 and B7 are wild yeast isolates from banana, and H4 and H7 are wild yeast isolates from wild honey. And yeast isolates identified as B10 (Candida tropicalis), B7 (Candida tropicalis), H4 (Candida tropicalis), H7 (Clavispora lusitaniae), and CY (Candida tropicalis) fermented the three sugars as represented in Table 1.

3.2 Alcohol Production Ability

The alcohol production ability of yeast isolates from sucrose, glucose, and fructose is illustrated in Fig. 1. The concentration (%) of alcohol produced by the yeast isolates vary with the type of sugar fermented toalcohol. The percentage of alcohol produced from the sucrose fermentation ranges from 4.11 – 11.50 (%) and individual yeast isolates recorded the following: B7(11.50%) > H7(8.62%) > CY (7.80%) > H4(4.88%) > B10 (4.11%), yeast isolates B7(11.50%) and H7(8.62%) produced more alcohol than the commercial wine yeast, CY (7.80%). The alcohol produced from glucose fermentation ranges from 2.19 – 9.82 (%), while individual yeast isolates recorded the following: B7(9.82%) > CY (6.28%) > B10(4.56%) > H7(4.03%) > H4(2.19%), only B7(9.82%) produced more alcohol than the commercial wine yeast, CY (6.28%). Alcohol produced from fructose fermentation ranges from 3.70 to 13.11 (%), and individual yeast isolates recorded the following: H7(13.11%) > CY (9.40%) > B10(7.03%) > H4(4.41%) > B7(3.70%), only H7(13.11%) produced more alcohol than the commercial wine yeast, CY (9.40%). Statistically, there is a significant difference in the concentration of alcohol produced between yeast isolates from sucrose, glucose, and fructose at the P value <0.001, and the three different sugars fermented by yeast isolates, show a significant difference in the percentage of alcohol produced by yeast isolates from sucrose, glucose, and fructose, respectively, at the P value <0.001.

3.3 Flocculation Ability

The flocculation ability of yeast isolates is graphically presented in Fig. 2. Yeast isolate CY demonstrated increasing flocculation of 28.55 and 44.75 (%) at 5 and 15 (minutes) respectively, while the wild yeast isolates B10, B7, H4, and H7 had percentage flocculation < 10 % at 5 and 15 (minutes) respectively. Statistically, there is a significant difference in flocculation and time between yeast isolates at P-value < 0.001.

Table 1. Sugar fermentation ability of yeast isolates

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Sucrose</th>
<th>Glucose</th>
<th>Fructose</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. tropicalis⁵⁶</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. tropicalis⁷⁷</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. tropicalis⁴⁴</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cl. lusitaniae¹⁷⁷</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. tropicalis⁷⁷</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ signifies the ability to ferment sugar. – signifies a lack of ability to ferment sugar.

5
3.4 Organic acid Production

The ability of microorganisms to produce organic acid is measured in Acid Unitage (AU) as presented in Fig. 3. The organic acid produced by the yeast isolates ranges from 1.25 – 3.90 (AU), while the individual yeast isolates B10, B7, CY, H4 and H7 recorded the following: 1.90±0.41, 3.10±0.41, 1.25±0.07, 3.90±0.41 and 2.40±0.41 (AU) respectively. H4 (3.90 AU) and CY (1.25 AU) had the highest and least organic acid production, statistically, there is a significant difference in organic acid production among the yeast isolates at P-value < 0.001; but there is no significant difference in the acid unitage of B10 (1.90±0.41) and H7 (2.40±0.41).

Fig. 1. Alcohol production ability of yeast isolates using glucose, fructose, and sucrose

Fig. 2. Flocculation proportion of yeast cells with time
Fig. 3. Acid unite values of yeast isolate on Czapek-Dox agar

Table 2. Production of hydrogen sulphide of yeast isolates on lead acetate agar and bismuth glycine glucose yeast extract (BIGGY) agar

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Lead Acetate Agar</th>
<th>BIGGY agar</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. tropicalis</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Cl. lusitaniae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

keys: - white colonies; + light brown; ++ brown; +++ dark brown/black

Hydrogen sulphide production is an undesired but inevitable metabolite expressed by yeast isolates during fermentation. A qualitative method of screening yeast isolates for H$_2$S carryout on Lead Acetate Agar (LAA) and Bismuth Glycine Glucose Yeast extract (BIGGY) agar is shown in Table 2. Hydrogen sulphide production was measured base on colour and colour intensity: White colony, no hydrogen sulphide production; light brown colony, low hydrogen sulphide production; brown colony, medium hydrogen sulphideproduction; and black colony, high hydrogen sulphide production. On LAA and BIGGY agar yeast isolate, B10 had a brown colony. Yeast isolates B7, CY, and H7 produced similar light brown colonies in the medium, while H4 showed variation in colour intensity between LAA and BIGGY agar.

4. DISCUSSION

The present study was aimed at evaluating the technological characteristic of wild non-Saccharomyces sourced from banana fruit and wild honey in southern, Nigeria in order to select appropriate autochthonous starter cultures for the production of typical safe regional wine and traditional fermented food.

4.1 Sugar Fermentation Capacity

The yeast isolates B10 (Candida tropicalis), B7 (Candida tropicalis), H4 (Candida tropicalis), H7 (Clavisporalusitaniae), and CY (Candida tropicalis) fermented sucrose, glucose, and fructose. My finding is consistent with the report of Lee et al. [9] and Tao et al. [54] that wild yeast
isolates fermented of sugar, such as glucose, fructose, and sucrose. Non-Saccharomyces have been implicated in fermentation sugar [55], and Candida spp isolated from palm wine was able to ferment sugar [56], which can play a major role in the production of fermented beverages [5]. The fermentation of glucose, fructose, and sucrose implies the possession of the hexose transporter gene (hxt 1- hxt 7) [57-58] the periplasmic invertase and sucrose H’ symporter AGT1 gene are associated with yeast isolates [59].

4.2 Alcohol Production

The non-Saccharomyces yeast isolates B10 (Candida tropicalis), B7 (Candida tropicalis), H4 (Candida tropicalis), H7 (Clavisporalusitaniae), and CY (Candida tropicalis) are fermenter yeasts but possess alcohol production ability [60]. My finding agrees with the report of Matsushika et al. [61] and Kang and Lee [62] that yeasts are known for their common characteristic of alcohol production from sugars. Sucrose metabolism requires the action of sucrasesynthases or invertases [63-64] and multiplegenes for the phosphoruduction of hexose, Hxt(1-17) [59,57] are associated with Candidatropicalis [65] More than 95% of the ethanol produced is from fructose, glucose, and sucrose by the respective Saccharomyces yeast isolates, such as glucose, fructose, and sucrose by the respective non-Saccharomyces yeast isolates, could be due to strain variation among the non-Saccharomyces species. My observation was in line with the report that better alcohol yield depends on the selection of microorganisms [64]. Although, my findings disagree with the report of greater yields of ethanol using glucose (0.37 g givirus) than fructose (0.32 g givirus) [67].

Thenoticeable difference in the concentration (%) of alcohol produced from the fermentation of fructose, glucose, and sucrose by the respective non-Saccharomyces yeast isolates, could be due to strain variation among the non-Saccharomyces species. My observation was in line with the report that better alcohol yield depends on the selection of microorganisms [64]. Although, my findings disagree with the report of greater yields of ethanol using glucose (0.37 g givirus) than fructose (0.32 g givirus) [67].

4.3 Flocculation Ability

Flocculation of yeast is an essential oenological property expressed at the end of sugar fermentation for yeast cells recovery and wine clarification. Commercial wine yeast (CY) had superior flocculating ability compared to wild yeast isolates. Flocculation of a yeast strain is absolutely dependent upon the presence of calcium on the cell surface [52] Cell-cell interactions have been proposed to be facilitated by specific recognition and adhesion factors [26]. The flocculation genes FLO1, FLO5, and FLO8 have been proposed as structural genes that encode proteins (lectins) involved in flocculation [58,24]. In another study it was revealed that flocculation is carried out by FLO-genes, FLO1, FLO5, FLO9, FLO10, and FLO11, located at telomeres and regulated by Flo8 and Mss11 [69] and the degree of flocculation induced by these genes expression seem to differ [47].

4.4 Organic Acid Production

The yeast isolates expressed the ability to produce organic acid during fermentation which was measured in acid unitage. My result is in agreement with the report that non-conventional yeast, Yarrowialipolytic have been identified as organic acids producers [41], also in a study conducted by Klinkeet et al. [42] Candida albican was implicated as organic acid producer. Organic acid production was regulated by mutations in genes such as GTR1, GTR2, LIP5, LSM1, PHO85, PLM2, RTG1, RTG2, and UBP3, and genes related to succinate dehydrogenase such as EMI5, SDH1, SDH2, SDH4, TCM62, and YDR379C-A [43]. The organic acid metabolisms of Candida zemplinina and Candida stellata are different from each other and from that of the Saccharomyces species [47-48] [44].

4.5 Hydrogen Sulphide Production

Hydrogen sulphide (H2S) production is a product of amino acid decarboxylation by microorganisms during fermentation production, that brings about off-flavour in an alcoholic beverage. The results obtained revealed that the yeast isolates are hydrogen sulphide producers, but the amount of hydrogen sulphide produced by the wild yeast isolates is within the limit when compared with the commercial wine yeast. My observation is in line with the report that H2S is a compulsory intermediate in the assimilation of sulphur catalyze by sulphitereductase in yeast through the sulphate reduction sequence and wine yeast (Saccharomyces cerevisiae) plays a vital role in volatile sulphur compounds production in wine [31,70]. The growth of brown colony on BGGY medium signifying hydrogen sulphide production was also reported by Linderholm et al. [32] and the MET2 and SKP2 genes have been identified as regulators of mild hydrogen sulphide metabolism in wine yeasts [71-72].
5. CONCLUSIONS

Non-Saccharomyces could be the hope of the wine microbiologist to ease the challenges in the wine industry. When the technological properties of wild yeast isolated from bananas and honey are compared to commercial wine yeast, wild yeasts are potential wine yeast waiting for deployment in the wine industry. As they could ferment sucrose, fructose, glucose, and carry out alcohol fermentation with the sugars. Produce moderate organic acid and a low amount of hydrogen sulphide, but, the wild yeasts are inferior to commercial wine yeast inability to flocculate.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

16. Varize C, De S, Maria Christoforeti-Furlan R, Muynąrسك E, De SM, Pereira GV, De M, Dantas Lopes L, Carlos Basso L. Biotechnological Applications of

45. Khan, Rijwan, Nipun Tyagi, and Nikita Chauhan. Safety of Food and Food Warehouse Using Vibhishan. Journal of Food Quality; 2021

46. Sahni, Varsha, Sandeep Srivastava, and Rijwan Khan. Modelling Techniques to Improve the Quality of Food Using Artificial Intelligence. Journal of Food Quality; 2021

67. Díaz-Nava LE, Montes-García N, Domínguez JM, Aguilar-Uscanga MG. Effect of carbon sources on the growth and

© 2021 Nnodim et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/75686